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Ideal Regularized Composite Kernel for
Hyperspectral Image Classification
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Abstract—This paper proposes an ideal regularized composite
kernel (IRCK) framework for hyperspectral image (HSI) classi-
fication. In learning a composite kernel, IRCK exploits spectral
information, spatial information, and label information simultane-
ously. It incorporates the labels into standard spectral and spatial
kernels by means of the ideal kernel according to a regularization
kernel learning framework, which captures both the sample sim-
ilarity and label similarity and makes the resulting kernel more
appropriate for specific HSI classification tasks. With the ideal
regularization, the kernel learning problem has a simple analytical
solution and is very easy to implement. The ideal regularization
can be used to improve and to refine state-of-the-art kernels, in-
cluding spectral kernels, spatial kernels, and spectral-spatial com-
posite kernels. The effectiveness of the proposed IRCK is validated
on three benchmark hyperspectral datasets. Experimental results
show the superiority of our IRCK method over the classical kernel
methods and state-of-the-art HSI classification methods.

Index Terms—Composite kernel (CK), hyperspectral image
(HSI) classification, ideal kernel, regularization.

I. INTRODUCTION

HYPERSPECTRAL remote sensors capture digital images
in hundreds of narrow and continuous spectral bands

spanning the visible to infrared spectrum [1]. The rich spectral
information makes hyperspectral images (HSIs) being applied
in different fields, such as military, agriculture, and mineralogy.
Among all these applications, classification is a very impor-
tant topic. Various HSI classification methods have been devel-
oped in the past decades [2]–[6]. Traditional HSI classification
methods usually discriminate and classify the pixels by mea-
suring the similarity among different spectral curves implicitly
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based on assumption that HSI samples in the same class have
similar spectral characteristics. The key to success for these
classification methods is to learn an accurate similarity metric
between samples.

In order to learn a desirable similarity metric, kernel functions
and kernel methods are introduced into the HSI classification
and have shown good classification performance [7], [8]. Ker-
nel methods can solve the high-dimensional HSI classification
problem effectively and are easy to measure the linear/nonlinear
relations between hyperspectral samples in reproducing kernel
hilbert space (RKHS) [8]. In the HSI classification, there are
mainly three kinds of kernels: spectral kernels, spatial kernels,
and spectral-spatial composite kernels.

Considering each spectral pixel as a sample or a pattern, clas-
sical kernels in machine learning can be set as spectral kernels
to measure the similarities between different spectral pixels.
The commonly used spectral kernels are Gaussian radial basis
function (RBF), polynomial and linear kernels [8]. Taking into
account spectral meaning and behavior, spectral-angle-based
kernel was proposed to tackle the variation of spectral energy [9].
Considering that the useful information for classification is not
equally distributed across bands, a spectrally weighted kernel
was proposed to highlight the informative spectral bands [10].
Considering that the discriminant capability of single kernel
is insufficient, representative multiple kernel learning (RMKL)
and discriminative multiple kernel learning (DMKL) algorithms
were proposed [11], [12]. The RMKL finds the max-variance
kernel by learning the linear combination of basis kernels [11],
whereas the DMKL learns an optimal combined kernel by maxi-
mizing separability in the RKHS [12]. Exploiting a large amount
of unlabeled samples for kernel regularization locally, a bagged
or cluster kernel encoding the similarity between unlabeled sam-
ples was proposed [13]. Similarly, graph Laplacian kernel was
proposed for the semisupervised HSI classification [14].

Spectral kernels are constructed based on the spectral infor-
mation, whereas spatial kernels use the spatial information. As
spatial neighboring pixels usually belong to the same class, lo-
cal spatial features extracted from the spatial neighborhood can
be used to represent neighboring pixels, and then used to gen-
erate the spatial kernel. The local spatial features can be the
mean or standard deviation features extracted from a squared
neighborhood [15], median features extracted from an adaptive
morphological neighborhood [16], and morphological profiles
(MPs) [17]. Among all these features, mean feature is the most
commonly used one. Rather than using the mean feature that
computes the average of the spatially neighboring pixels in the
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original space, the spatial feature used in mean map kernel
[18] or mean filtering kernel [19] is the average of the spatially
neighboring pixels in the kernel space. The mean map kernel or
mean filtering kernel measures distances between sets of pixels
in the high-dimensional feature space. Furthermore, given each
spatially neighboring pixel a weight, a soft mean map kernel or
neighborhood filtering kernel can be obtained [18], [19]. Similar
to the mean map kernel that considers all neighbors in a spatial
window, a region kernel measuring the similarity of different
pixel regions was proposed [20]. Rather than computing aver-
age distances as in mean map kernel, graph kernel was proposed
to estimate higher order deviations of all neighboring samples
in the feature space [21].

HSIs have both the spectral and spatial characteristics. By
exploiting the complementary discriminant information in the
spatial and spectral domains, the composite kernel (CK) method
is commonly used to perform the joint spatial–spectral classi-
fication. Joint consideration of the spectral and spatial textural
information, four different composite kernels are proposed [15],
including stacked kernel, direct summation kernel, weighted
summation kernel, and cross-information kernel. Similarly,
sample-cluster composite kernels [18], spatial and spectral
activation-function-based composite kernels [22], generalized
composite kernels [17], and point-region composite kernels
[20], have been proposed for the spectral–spatial classification of
HSIs. Besides the composite kernels, the multiple kernel learn-
ing methods also combine the rich spatial and spectral features
and achieve good performance [23], [24].

However, almost all of the aforementioned kernel-based
methods learn the standard kernels from the samples alone
(i.e., spectral and spatial samples, or supervised and unsuper-
vised samples), without considering the labels of a dataset. In
fact, the label information can be used for the kernel learning
and to refine the standard kernels. Exploiting the labels explic-
itly, an ideal kernel is constructed [25]. It assigns the sample
pair with a kernel value 1 if they belong to the same class, and
a kernel value 0 if they belong to different classes. The ideal
kernel incorporates label similarities, and is usually used for
kernel parameter selection [26]. Based on the ideal kernel, an
ideal regularization strategy is recently proposed to learn a data-
dependent kernel from the labels and shows good performance
[27], [28].

In this paper, we propose an ideal regularized (IR) composite
kernel (IRCK) framework for spatial–spectral classification of
HSIs. In IRCK, we consider spectral and spatial kernels as initial
standard kernels, and employ an ideal regularization strategy to
refine the initial kernels by incorporating the labels into stan-
dard spectral and spatial kernels. Finally, the regularized spatial
and spectral kernels are combined to form a CK for the HSI
classification.

The main contribution of this paper is that it develops a uni-
form ideal regularization framework to improve the existing
spectral kernels, spatial kernels, and spatial–spectral compos-
ite kernels. Although the ideal regularization kernel learning
method was proposed in [27], it is the first time to employ it for
the HSI classification. It should be noted that the ideal regular-
ization framework in [27] employs both the label information
and geometric structure information from unlabeled samples,

and the experiments are performed mainly on transductive and
semisupervised settings. In [27], the unlabeled samples should
be used to produce a manifold regularization term in the ideal
regularization framework and the IR methods do not always
show the best results for general pattern classification prob-
lems. However, in our framework, the unlabeled samples and
geometric structure information are not needed and the proposed
IRCK method shows consistently better results than other ker-
nel methods for the HSI classification. Due to the spatial local
similarity of HSI, the label information incorporated in the ideal
regularization model can largely improve the classification per-
formance in the large homogeneous regions. In addition, using
the spectral similarity, spatial similarity, and label similarity si-
multaneously, the proposed IRCK method is much effective and
outperforms the classical kernel methods and several state-of-
the-art spatial–spectral classification methods.

The rest of this paper is organized as follows. The related work
on kernel methods is introduced in Section II. In Section III, the
proposed IR kernel method is described. The experimental re-
sults and analysis are provided in Section IV. Finally, Section V
gives a summary of our work.

II. RELATED WORK

A. Spectral Kernel

Given a set of HSI training sample points, L =
{(x1 , y1), . . . , (x� , y�)} with xi ∈ Rd , a spectral kernel mea-
sures the spectral similarity between sample points. In the HSI
classification, the commonly used kernels are linear kernel,
polynomial kernel, and Gaussian RBF kernel [7], [8], [15]. For
example, the Gaussian RBF kernel between two points xi and
xj can be expressed as

Kw (xi ,xj ) = exp
(
− ‖xi − xj‖2

2σ2
w

)
(1)

where σw is the width of the spectral RBF kernel.

B. Spatial Kernel

Given a pixel xi , we can extract a local spatial feature vector
xs

i from its spatial neighborhood N(xi) = {xi0 ,xi1 , . . . ,xin}
(xi0 � xi) [15]. For two pixels xi and xj , the spatial RBF kernel
between them is expressed as

Ks(xi ,xj ) = exp
(
− ‖xs

i − xs
j‖2

2σ2
s

)
(2)

where σs is the width of the spatial RBF kernel. The spatial
mean map kernel is defined as follows [18], [19]:

Km (xi ,xj ) =
〈 1

1 + n

n∑
p=0

φ(xip),
1

1 + n

n∑
q=0

φ(xjq )
〉

=
1

(1 + n)2

n∑
p=0

n∑
q=0

〈φ(xip), φ(xjq )〉

=
1

(1 + n)2

n∑
p=0

n∑
q=0

K(xip ,xjq ) (3)

where φ is a nonlinear feature map.
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C. Spectral–Spatial CK

By exploiting the complementary discriminant information
in spatial-domain and spectral-domain, the CK method is com-
monly used to perform the spatial–spectral classification [15],
[20], [22]. A typical CK used in SVM-CK is the weighted sum-
mation kernel:

Kws(xi ,xj ) = (1 − μ)Kw (xi ,xj ) + μKs(xi ,xj ) (4)

where μ is a combination coefficient balancing the spatial and
spectral similarity information.

Similarly, a weighted combination of spectral kernel and spa-
tial mean map kernel is represented as

Kwm (xi ,xj ) = (1 − μ)Kw (xi ,xj ) + μKm (xi ,xj ). (5)

III. IR KERNEL

A. Ideal Kernel

The ideal kernel [25], [29] is defined as

T (xi ,xj ) =

{
1, yi = yj ,

0, yi �= yj .
(6)

The ideal kernel leads to a perfect classification inspired from
an “oracle”: two samples xi and xj should be considered as
“similar” (with kernel value 1) if and only if they belong to the
same class (yi = yj ) [25], [29]. In other words, the ideal kernel
incorporates the label information and reflects the similarity
between labels.

B. Ideal Regularization

The standard spectral and spatial kernels measure the simi-
larity between samples. However, these kernels do not carry any
label information of the given data. The label information can
be used to refine the standard kernels and to obtain new kernels
more suitable for specific classification tasks [27].

In order to embed the label information into a standard kernel
K0 and to learn a desirable kernel K, an IR kernel learning
framework is proposed [27], [28]:

min
K�0

D(K,K0) + γΩ(K) (7)

where D(·, ·) denotes the divergence between the matrices, Ω(·)
is a regularization term, γ is a tradeoff parameter, and K � 0
means K is a symmetric positive semidefinite matrix. The di-
vergence can be chosen as the von Neumann divergence:

D(K,K0) = tr(K log K − K log K0 − K + K0) (8)

where tr(A) denotes the trace of matrix A. The regularization
term can be defined as Ω(K) = −tr(KT ), which encodes the
label information of the given data samples [27]. Then, the ideal
regularization framework (7) can be rewritten as

min
K�0

tr(K log K − K log K0 − K + K0) − γtr(KT ). (9)

Setting the derivative with respect to K to zero for the objec-
tive function in (9), it gets log K − log K0 − γT = 0. It follows

that

K∗ = exp(log K0 + γT ) = K0 	 exp(γT ) (10)

where 	 denotes the dot product between two matrices.
The kernel (10) can be directly extended to new samples that

are never encountered before, this is so-called out-of-sample ex-
tensions. Denote S = K−1

0 (K∗ + K0)K−1
0 , the kernel between

new points s and t is computed as [27], [30]

K(s, t) = −K0(s, t) +
�∑

i,j=1

S(i, j)K0(s,xi)K0(xj , t).

(11)

Remark 1: The Taylor expansion of (10) is

K∗ = K0 + γK0 	 T +
γ2

2!
K0 	 T 2 + · · · . (12)

The first term on the right-hand side of the equation is the
original kernel, and the rest of the terms are regularized kernels.
It demonstrates that the IR kernel can be a linear combination of
the original kernel and regularized kernels. When γ = 0, the IR
kernel is reduced to the original kernel. When γ is very small,
only the first order regularization term K0 	 T plays a role in
the ideal regularization. Because T equals to 1 only for sample
pairs belonging to the same class, ideal regularization enhances
the kernel similarity or kernel function values on sample pairs in
the same class. In other words, ideal regularization exploits the
sample similarity in K0 , and meanwhile uses the label similarity
in T to increase the intraclass similarity.

Remark 2: From (10), we can see that the IR kernel is a dot
product between the original kernel and an exponential ideal
kernel. The computation of ideal kernel and exponential ideal
kernel are relatively simple, so the implement of ideal regular-
ization algorithm is very easy.

C. Ideal Regularized CK

In order to learn an ideal spectral kernel Kw and an ideal
spatial kernel Ks and hence an ideal spectral–spatial kernel
Kws = (1 − μ)Kw + μKs , we propose the following IRCK
optimization framework:

min
K w ,K s �0

D(Kw ,Kw0) + D(Ks,Ks0) + γΩ(Kws)

= tr(Kw log Kw − Kw log Kw0 − Kw + Kw0)

+ tr(Ks log Ks − Ks log Ks0 − Ks + Ks0)

− γ
(
(1 − μ)tr(Kw T ) + μtr(KsT )

)
. (13)

The optimal solution of (13) is

Kw = Kw0 	 exp(γ(1 − μ)T ) (14)

Ks = Ks0 	 exp(γμT ). (15)

And the composite IR kernel is

Kws = (1 − μ)Kw + μKs

= (1 − μ)Kw0 	 exp(γ(1 − μ)T )

+ μKs0 	 exp(γμT ). (16)
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Algorithm 1: SVM with IRCK for the HSI classification.

Input: Training samples {(xi , yi)}�
i=1 , regularization

parameter γ.
1 Compute standard spectral kernel Kw0 and spatial
kernel Ks0 (or Km0) based on samples.

2 Compute the ideal kernel T based on labels.
3 Compute the ideal regularized spectral kernel
Kw , spatial kernel Ks (or Km ), and composite kernel
Kws (or Kwm ).

4 Extend the ideal regularized kernels to new test
samples according to (11).

5 Set the composite kernel on new samples as:
Kws(s, t) = (1 − μ)Kw (s, t) + μKs(s, t).

6 Perform SVM classification based on the ideal
regularized composite kernels.

Output: The prediction label for each sample.

If the spatial kernel is the mean map kernel, the CK is

Kwm = (1 − μ)Kw + μKm . (17)

Incorporating the label information into the spectral and spa-
tial kernels, the proposed IRCK SVM algorithm is summarized
in Algorithm 1.

D. Representer Theorem of IRCK-Based SVM

Here, we provide the representer theorem of IRCK SVM.
Theorem 1: Given the training samples L = {(xi , yi)}�

i=1
and the ideal kernel T (x,x′) defined in (6), the minimizer of
SVM with IRCK admits an expansion:

f(x) = (1 − μ)
�∑

i=1

αiK
ω (xi ,x) + μ

�∑
i=1

αiK
s(xi ,x) (18)

where Kω (xi ,x) and Ks(xi ,x) are the IR spectral and spatial
kernels in (14) and (15), respectively.

Remark 3: The proof of the theorem is given in Appendix
A. From the Theorem 1, the predictive function (18) can be
expanded as

f(x) =
�∑

i=1

αi

(
(1 − μ)Kω0(xi ,x) + μKs0(xi ,x)

)

+ γ
�∑

i=1

αi

(
(1 − μ)[Kω0 	 T ](xi ,x)

+ μ[Ks0 	 T ](xi ,x)
)

+ · · · (19)

The additional terms in f(x) enrich the representation ability
of IR kernel SVM. That is, the predictive function with IR ker-
nel usually has better approximation ability than the traditional
SVM with data independent kernel. When γ = 0, the repre-
senter theorem is consistent with the standard SVM with the
spectral and spatial kernels. Moreover, the predictor only uses
the spectral information as μ = 0, and just uses the spatial data
as μ = 1.

Fig. 1. Indian Pines dataset. (a) RGB composite image of three bands 50, 27,
and 17. (b) Ground-truth map.

Fig. 2. University of Pavia dataset. (a) RGB composite image of three bands
60, 30, and 2. (b) Ground-truth map.

IV. EXPERIMENTAL RESULTS

A. Datasets

Three public HSI datasets are used in the experiments.1

1) Indian Pines: Acquired by the AVIRIS sensor in 1992.
The image scene contains 145 × 145 pixels and 220 spectral
bands, where 20 channels were discarded because of atmo-
spheric affection. There are 16 classes in the data. The total
number of samples is 10 249 ranging from 20 to 2455 in each
class. The false color composition of bands 50, 27, and 17 and
the ground-truth map are shown in Fig. 1.

2) Pavia University: Acquired in 2001 by the ROSIS instru-
ment over the city of Pavia, Italy. This image scene corresponds
to the University of Pavia and has the size of 610 × 340 pixels
and 115 spectral bands. After discarding noisy and water ab-
sorption bands, 103 bands are retained. The data contain nine
ground-truth classes. The false color composition of bands 60,
30, and 2 and the ground-truth map are shown in Fig. 2.

3) Botswana: Acquired by NASA EO-1 satellite over the
Okavango Delta, Botswana in May 31, 2001 [31]. The image
scene has the size of 1476 × 256 pixels. By discarding water
absorption and noisy bands, 145 bands are retained. The data
contain 3428 samples from 14 identified classes. The false color

1http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes
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Fig. 3. Botswana dataset. (a) RGB composite image of three bands 51, 149,
and 31. (b) Ground-truth map.

composition of bands 51, 149, and 31 and the ground-truth map
are shown in Fig. 3.

B. Results

1) Comparison With Kernel Methods: We first compare the
proposed IR kernel method with classical kernel methods. Five
classical SVM classification methods are considered, including
spectral SVM (Kω ), spatial SVM (Ks), spectral–spatial SVM
(SVM with CK, SVM-CK, Kωs) [15], SVM with mean map ker-
nel (Km ), and SVM with composite mean map kernel (Kωm )
[18]. Imposing ideal regularization on SVM kernels, the cor-
responding IR SVM methods are compared. The classification
performance is assessed on the testing set by the overall accu-
racy (OA), average accuracy (AA), and kappa coefficient (κ).
All data are normalized to have a unit �2 norm. CK refers to
the spatial and spectral weighted summation kernel. Gaussian
kernel is used in all SVM algorithms, and LIBSVM software
is used to implement SVM [32]. For the spatial-based methods,
9 × 9 neighborhood window is used.

We investigate the performance of the proposed IRCK meth-
ods under different numbers of labeled samples per class.
We randomly choose M = 15, 20, 25, 30, 35, 40 samples from
each class to form the training set, respectively (For the class
less than M samples, half of total samples are chosen). The
remaining samples consist of testing set.

The classification overall accuracies, average accuracies, and
κ coefficients under different numbers of training samples for
three datasets are shown in Tables I–III, respectively. From re-
sults in these tables, we can conclude:

1) The proposed IRCK methods show a significant improve-
ment over the existing spectral, spatial, and spectral–
spatial kernel methods in the case of different numbers
of labeled samples. The improvement of IR kernel over
the corresponding original kernel demonstrates that the
ideal regularization can enhance the kernel discriminant
ability.

2) The IR composite mean map kernel (Kωm -IR) provides
the best classification results. Compared with the orig-
inal composite mean map kernel (Kωm –Ori), Kωm –IR
increases the OA over different number of labeled sam-
ples by 3.7% in average for Indian Pines, by 2.2% in
average for Pavia University, and by 0.85% in average

for Botwana dataset. Compared with the commonly used
benchmark SVM-CK algorithm (Kωs-Ori), Kωm -IR in-
creases the OA by 8.2%, 5.4%, and 1.1% in average for
three datasets, respectively.

3) The proposed IRCK is effective in the case with limited
training samples. When the number of labeled samples
is limited, the kernel similarity measured by samples is
insufficient to reflect the class discrepancy. In this case,
the label similarity in ideal kernel can assist the sample
similarity to obtain a reliable metric and desirable classi-
fication result.

4) For the spectral SVM (Kω ), the corresponding IR kernel
has little or no improvements over the original kernel, es-
pecially for the University of Pavia dataset. However, for
the spatial SVM (Ks), the corresponding IR kernel largely
improves the original kernel. Because the ideal regular-
ization enhances the kernel similarity between samples in
the same class and the spectral kernel similarity is usually
less accurate than spatial kernel similarity, ideal regular-
ization on spectral kernel is less effective than that on
spatial kernel.

5) Although the improvement on spectral kernel is marginal,
the improvement on spectral–spatial CK is more signifi-
cant than that on spatial kernel. It demonstrates that the
IRCK is not simply a combination of IR spectral and spa-
tial kernels. In an ideal regularization CK framework (16)
or (17), the spectral kernel, spatial kernel, and CK are
improved simultaneously.

Figs. 4 and 5 show the classification maps for the Indian Pines
and University of Pavia datasets in the case of 40 labeled samples
per class for training, respectively. The maps correspond to
the classification results using different original kernels and
IR kernels. It can be seen that the IR kernel methods show
relatively better results than the original kernel methods in terms
of consistent classification results with little noise.

2) Comparison With Spatial–Spectral Classification Meth-
ods: Furthermore, we compare the proposed IR kernel method
with some state-of-the-art spatial–spectral classifiers:

1) Spatial–spectral preprocessing and feature extraction
methods: Gabor-filtering-based KELM (Gabor-KELM)
and multihypothesis-based KELM (MH-KELM) [33];

2) probability-based postprocessing methods: edge-preserv-
ing filtering (EPF) [34], and maximizer of the posterior
marginal by loopy belief propagation (MPM-LBP) [35];

3) spatial-spectral sparse coding models: joint sparse rep-
resentation (JSR) [36] and JSR with nonlocal weight
(JSR-NLW) [37], spatial aware dictionary learning
(SADL) [38];

4) deep learning method: deep belief network (DBN) [39],
[40]; and

5) multiple kernel learning method: discriminative MKL
(DMKL) [12].

In this experiment, we randomly choose 1%, 3%, 5%, 7%,
and 9% labeled samples per class for training for three datasets,
respectively (For the class with extremely limited samples, at
least three samples are chosen). The remaining labeled sam-
ples are used for testing. The classification OAs are shown in
Tables IV–VI. It can be seen that the proposed IR composite
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TABLE I
CLASSIFICATION ACCURACIES (%) UNDER DIFFERENT NUMBERS OF LABELED SAMPLES FOR INDIAN PINES DATASET

TABLE II
CLASSIFICATION ACCURACIES (%) UNDER DIFFERENT NUMBERS OF LABELED SAMPLES FOR PAVIA UNIVERSITY DATASET

mean map kernel (Kωm -IR) shows the best overall perfor-
mances on three datasets. Compared with DMKL, the proposed
IRCK method shows slightly better results on the Indian Pines
and University of Pavia datasets, and comparable results on the
Botswana dataset. DMKL combines ten basic kernels, which
are constructed on the MPs with the diamond structure element
of size [3, 5, 7, 9, 11, 13, 15, 17, 19, 21], respectively [12].
While the propose IR composite mean map kernel combines a
spectral kernel and a spatial mean map kernel constructed on
spatial features in a spatial window of width 9. That is, we only

use two kernels whereas DMKL uses ten kernels. It should also
be noted that DBN provides bad results in the case of limited
training samples.

C. Parameter Analysis

Now, we investigate the sensitivity of the proposed algo-
rithm on different parameters. We take the SVM-CK-IR al-
gorithm as an example, and choose 15 and 100 labeled sam-
ples per class to form the training set and testing set. For
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TABLE III
CLASSIFICATION ACCURACIES (%) UNDER DIFFERENT NUMBERS OF LABELED SAMPLES FOR BOTSWANA DATASET

Fig. 4. Classification maps for the Indian Pines dataset. The first and second rows correspond to the original and IR kernels, respectively. (a) Kω -Ori (OA =
71.08%). (b) Ks -Ori (OA = 88.31%). (c) Kω s -Ori (OA = 89.27%). (d) Km -Ori (OA = 92.60%). (e) Kω m -Ori (OA = 93.19%). (f) Kω -IR (OA = 72.40%).
(g) Kω -IR (OA = 89.08%). (h) Kω s -IR (OA = 94.20%). (i) Km -IR (OA = 95.18%). (j) Kω m -IR (OA = 96.07%).

SVM-CK-IR, there are IR parameter γ and SVM-CK param-
eters μ, σω , and σs . The parameters γ and μ vary in the in-
tervals γ ∈ [10−6 , 10−5 , . . . , 101] and μ ∈ [0, 0.1, . . . , 1]. The
spectral and spatial Gaussian kernel width σω and σs change
in the range {0.01, 0.05, 0.1, 0.2, . . . , 1.5}. We first investi-
gate the effect of IR parameter γ on SVM-CK-IR. The OAs
versus γ are shown in Fig. 6, where the proposed IR kernel
method provides stable results over a wide range of regular-
ization parameters. Similarly, we analyze the effect of spatial–
spectral combination coefficient μ. Fig. 7 shows the OAs of
SVM-CK-IR under different combination coefficients. It can be
seen that the proposed SVM-CK-IR is stable when μ is no less
than 0.4.

Next, we show the effect of two kernel parameters: spatial
and spectral RBF kernel parameters σs and σω . The OAs of
SVM-CK and SVM-CK-IR versus spatial and spectral kernel
parameters are shown in Fig. 8. From the figure, it can be clearly
seen that SVM-CK-IR is less sensitive to kernel parameters than
the original SVM-CK. The original SVM-CK achieves the best
OA at a narrow band whereas the proposed SVM-CK-IR shows
good performance over a wide range of spatial and spectral ker-
nel parameters. It demonstrates that the rationality and veracity
of kernel function (IR kernel) can reduce the dependence on
the kernel parameters. Based on the results, we set the width of
spectral kernel Kω and spatial kernel Ks as (1, 0.5) for three
datasets.
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Fig. 5. Classification maps for the Pavia University dataset. The first and second rows correspond to the original and IR kernels, respectively. (a) Kω (OA =
79.13%). (b) Ks (OA = 91.54%). (c) Kω s (OA = 93.41%). (d) Km (OA = 96.10%). (e) Kω m (OA = 96.45%). (f) Kω -IR (OA = 78.91%). (g) Kω -IR (OA
= 92.20%). (h) Kω s -IR (OA = 94.99%). (i) Km -IR (OA = 97.65%). (j) Kω m -IR (OA = 98.03%).

TABLE IV
COMPARISON WITH SPATIAL–SPECTRAL CLASSIFIERS ON INDIAN PINES DATASET

Gabor-KELM MH-KELM EPF MPM-LBP JSR JSR-NLW SADL DBN SVM-CK DMKL K ω m -IR

1% 67.96 ± 1.37 78.91 ± 1.32 62.82 ± 6.72 71.09 ± 2.30 67.81 ± 0.85 69.36 ± 0.59 78.80 ± 1.09 46.63 ± 1.34 74.91 ± 2.64 85.25 ± 2.56 84.15 ± 2.65
3% 85.80 ± 0.58 92.07 ± 0.63 85.21 ± 3.52 86.04 ± 2.08 83.14 ± 0.76 84.56 ± 0.40 90.73 ± 1.75 56.11 ± 3.10 87.86 ± 0.89 93.67 ± 0.46 94.67 ± 0.38
5% 91.68 ± 1.05 95.06 ± 0.37 89.81 ± 0.92 91.55 ± 1.38 88.52 ± 1.42 89.62 ± 1.77 94.01 ± 0.73 64.54 ± 1.94 92.78 ± 0.36 96.11 ± 0.55 97.40 ± 0.49
7% 94.66 ± 0.74 96.59 ± 0.39 92.72 ± 0.87 93.46 ± 0.69 92.18 ± 0.47 93.56 ± 0.39 95.54 ± 1.15 69.99 ± 1.18 95.01 ± 0.80 97.31 ± 0.35 98.22 ± 0.21
9% 96.73 ± 0.59 97.74 ± 0.21 95.11 ± 0.39 95.29 ± 0.76 94.20 ± 0.51 95.41 ± 0.32 97.45 ± 0.46 74.27 ± 1.56 96.05 ± 0.43 97.95 ± 0.22 98.72 ± 0.21

TABLE V
COMPARISON WITH SPATIAL–SPECTRAL CLASSIFIERS ON UNIVERSITY OF PAVIA DATASET

Gabor-KELM MH-KELM EPF MPM-LBP JSR JSR-NLW SADL DBN SVM-CK DMKL K ω m -IR

1% 93.46 ± 0.39 95.38 ± 0.72 92.07 ± 3.25 95.60 ± 0.26 80.87 ± 0.84 82.10 ± 0.74 93.10 ± 1.03 64.74 ± 2.56 94.73 ± 0.27 97.80 ± 0.89 98.20 ± 0.24
3% 96.87 ± 0.33 98.04 ± 0.16 94.81 ± 0.77 97.90 ± 0.16 84.81 ± 0.40 87.93 ± 0.44 97.31 ± 0.22 78.76 ± 0.29 97.13 ± 0.29 99.43 ± 0.23 99.62 ± 0.09
5% 97.62 ± 0.12 98.60 ± 0.06 95.83 ± 0.72 98.32 ± 0.25 87.43 ± 0.67 91.56 ± 0.46 98.71 ± 0.23 85.58 ± 2.64 98.18 ± 0.12 99.63 ± 0.20 99.72 ± 0.05
7% 97.99 ± 0.15 98.89 ± 0.16 96.18 ± 1.07 98.58 ± 0.06 89.50 ± 0.45 93.84 ± 0.34 98.94 ± 0.13 85.95 ± 0.48 98.26 ± 0.06 99.80 ± 0.03 99.83 ± 0.02
9% 98.25 ± 0.10 99.07 ± 0.08 96.31 ± 1.05 98.62 ± 0.11 91.04 ± 0.27 95.28 ± 0.23 99.04 ± 0.09 88.66 ± 2.05 98.51 ± 0.04 99.86 ± 0.01 99.87 ± 0.01

TABLE VI
COMPARISON WITH SPATIAL–SPECTRAL CLASSIFIERS ON BOTSWANA DATASET

Gabor-KELM MH-KELM EPF MPM-LBP JSR JSR-NLW SADL DBN SVM-CK DMKL K ω m -IR

1% 83.78 ± 1.75 89.94 ± 0.97 88.12 ± 4.26 87.80 ± 3.00 72.30 ± 2.56 76.61 ± 2.39 88.99 ± 2.96 9.14 ± 0.77 88.36 ± 2.40 91.88 ± 1.12 91.83 ± 3.12
3% 93.17 ± 0.86 96.00 ± 0.60 93.01 ± 1.92 93.55 ± 1.16 84.38 ± 1.09 88.26 ± 0.51 94.66 ± 1.88 7.32 ± 2.79 95.75 ± 0.92 96.90 ± 1.72 97.84 ± 0.91
5% 95.04 ± 0.77 97.99 ± 0.78 94.67 ± 1.74 96.20 ± 0.91 90.15 ± 1.25 92.88 ± 0.84 97.81 ± 0.55 61.24 ± 9.26 96.74 ± 0.70 99.38 ± 0.36 98.93 ± 0.64
7% 96.21 ± 1.38 98.63 ± 1.01 96.54 ± 1.03 97.17 ± 0.77 93.18 ± 1.69 94.95 ± 1.28 98.73 ± 0.45 88.37 ± 3.81 97.69 ± 0.34 99.09 ± 1.03 99.47 ± 0.28
9% 97.70 ± 0.16 99.44 ± 0.26 97.00 ± 1.19 97.57 ± 0.61 93.60 ± 1.23 96.37 ± 0.96 99.02 ± 0.33 91.02 ± 2.96 98.38 ± 0.41 99.83 ± 0.24 99.59 ± 0.36
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Fig. 6. OA versus IR parameter γ for SVM-CK-IR.

Fig. 7. OA versus combination coefficient μ for SVM-CK-IR.

D. Label Similarity and Class Separability

The kernel measures the similarity between the data in the
RKHS. By modifying the standard kernel with ideal regulariza-
tion, the new regularized kernel embeds both the data similarity
and label similarity, which can improve the class separability.

We first use a simulated example to show the effectiveness
of label similarity. We choose five samples from “Soybean-
mintill” and “Soybean-clean” classes of Indian Pines dataset,
respectively. Then, we compute the original weighted summa-
tion kernel Kωs-Ori and the corresponding IR kernel Kωs-IR.
The kernel values are shown in Fig. 9, where the first five sam-
ples belong to “Soybean-mintill” and the last five samples are
from “Soybean-clean.” Because the ten samples belong to the
same Soybean material (two subclasses of Soybean), their dif-
ferences are very small. It is very difficult to distinguish the
subtle difference between them based on the sample similarity
(kernel values) as shown in Fig. 9(a). For example, the sample 1
is more similar with sample 9 than samples 3, 4, and 5, although
sample 9 comes from a different class. Notwithstanding, when
the label similarity is considered, the IR kernel increases the
intraclass similarity as shown in Fig. 9(b). From Fig. 9(b), we
can see that the samples in {1, 2}, {3, 4, 5} are very similar.
Meanwhile, samples 2 and 4 are similar, so the two components

Fig. 8. OA versus spatial and spectral kernel parameters σs and σω for SVM-
CK (a) and SVM-CK-IR (b). The colorbars on the right of the figures indicate
the mapping of OAs into the colormap.

Fig. 9. The Gaussian kernel function values between different samples: (a)
Original Gaussian kernel. (b) IR Gaussian kernel. The first five samples “1–5”
belong to the class “Soybean-mintill” and the last five samples “6–10” are from
the class “Soybean-clean.” The colorbars on the right of the figures indicate the
mapping of kernel values into the colormap. The more similar the two samples,
the higher the kernel values.

{1, 2} and {3, 4, 5} are connected as a whole and all samples in
the first class (samples {1, 2, 3, 4, 5}) are with higher similarity.
Similar results can be obtained for the second class.

In the following, we show the classification class accuracy of
the proposed algorithm on three real datasets. For simplicity, we
only compare SVM-CK and SVM-CK-IR and show the results
in the case of M = 15 labeled samples per class for training.
The results in Table VII indicate that by incorporating the la-
bel information into the standard spatial–spectral CK, the new
regularized kernel significantly improves the class separabil-
ity. In detail, the class accuracy of SVM-CK-IR is higher than
that of the original SVM-CK almost for each class and each
dataset. This is because the ideal regularization can increase
the intraclass similarity and decrease the interclass similarity (if
the value 0 changes to −1 in ideal kernel), which is similar to
linear discriminant analysis (LDA). Furthermore, the standard
derivation of OA of SVM-CK-IR is relatively smaller than that
of SVM-CK especially for Indian Pines and Botswana datasets.
This shows the proposed IR kernel method is generally more
stable than the original kernel method.

E. Computational Time

In Section III-B, we have presented that the computational
complexity of IR kernel method is almost the same as that of
standard kernel method. Now, we show the computational time
of different algorithms under different numbers of labeled sam-
ples per class on Indian Pines datasets. The results are shown in
Fig. 10, where the computational times of the initial kernel are
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TABLE VII
CLASSIFICATION CLASS ACCURACIES OF SVM-CK AND SVM-CK-IR ON THREE DATASETS

Fig. 10. Computational times of different algorithms on Indian Pines dataset.

not included because the initial kernel is involved in both the
standard and regularized kernel methods. It can be seen that the
computational time of IR kernel classification method is slightly
higher than that of the corresponding original kernel classifica-
tion method. Notwithstanding, they are in the same order.

V. CONCLUSION

In this paper, we have proposed a new IRCK framework
for classification of hyperspectral remote sensing images. Dif-
ferent from the traditional CK methods considering only the
sample similarity, the proposed IRCK considers both the sam-
ple similarity and label similarity. It incorporates the labels
into a standard kernel by means of ideal kernel according to a
regularization kernel learning framework. The regularized ker-
nel learning problem is very easy to solve, and suitable for
various state-of-the-art kernels. Experimental results have
shown that, by exploiting the spectral, spatial, and label
information, the proposed IRCK method outperforms state-of-
the-art spatial–spectral classification methods.

APPENDIX

A. Proof of Theorem 1

Proof. Let HK be the RKHS [41], [42] associated with the
CK (1 − μ)Kω + μKs , and consider the data-dependent space
span{(1 − μ)Kω (xi , ·) + μKs(xi , ·)}�

i=1 ⊂ HK . Let f ∈ HK

be the minimizer of IRCK SVM. Then, f can be uniquely
decomposed into a component f1 ∈ span{(1 − μ)Kω (xi , ·) +
μKs(xi , ·)}�

i=1 and a component f2 orthogonal to it. Thus, there
exist some constants {αi}�

i=1 such that

f = f1 + f2 =
�∑

i=1

αi

(
(1 − μ)Kω (xi , ·) + μKs(xi , ·)

)
+ f2 .

According to the reproducing property of HK , we know that for
any xj ∈ L

f(xj ) =
〈
f, (1 − μ)Kω (·,xj ) + μKs(·,xj )

〉

=
�∑

i=1

αi

(
(1 − μ)Kω (xi ,xj ) + μKs(xi ,xj )

)

+
〈
f2 , (1 − μ)Kω (·,xj ) + μKs(·,xj )

〉

=
�∑

i=1

αi

(
(1 − μ)Kω (xi ,xj ) + μKs(xi ,xj )

)
.

The above equation tells us that the empirical error in SVM just
depends on the coefficients {αi}�

i=1 .
Moreover, observed that

‖f‖K =
∥∥∥

�∑
i=1

αi

(
(1 − μ)Kω (xi , ·) + μKs(xi , ·)

)∥∥∥
K

+ ‖f2‖K

≥
∥∥∥

�∑
i=1

αi

(
(1 − μ)Kω (xi , ·) + μKs(xi , ·)

)∥∥∥
K

.
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Hence, the minimizer of CK SVM must have f2 = 0. This
completes the proof. �
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